Образование для образованных. 2021 бесплатное чтение

© Анатолий Левенчук, 2021

ISBN 978-5-0051-2538-5

Создано в интеллектуальной издательской системе Ridero

Предисловие. Прошивка для мозга, версия 2021 года

Вы читаете уже вторую версию книги1/курса2 «Образование для образованных 2021», практически полностью переписанную по сравнению с версией 2020 года. Основная идея книги в том, что жизнь абсолютно непредсказуема в плане самых разных проектов, в которых ты себя обнаруживаешь, и даже образованные люди должны обновить своё образование, чтобы оставаться современным и быстро разбираться с каждым новым проектом.

Проверьте: есть ли у вас какая-то устаревшая уже мечта? Не пора ли её обновить, заменить на более современную? Зацикливание на достижении стратегической мечты становится в 21 веке признаком не упорства, а меднолобости и нездорового фанатизма. Будьте современным: регулярно меняйте стратегию, не цепляйтесь за прошлые мечты, смелее идите в будущее. Что будет в этом будущем, какое и в чём потребуется мастерство – непонятно. Поэтому будьте готовы к чему угодно, прежде всего к постоянной смене собственных проектных ролей. Личное стратегирование придётся делать постоянно, а не один раз в студенческие годы. Кто не меняет регулярно жизненные планы – меднолобый фанат-фундаменталист, упёртый идиот, а не цельный человек. Люди адаптивны, подстраиваются под перемены. Одна мечта на длинную жизнь бессмысленна.

Эволюция бесконечна, ваше развитие не должно сводиться к достижению единственной выбранной в молодости цели, ибо это путь не к успеху, а к вечному чувству вины от романтических и утопических идей «верности цели». Меняющие жизнь и работу изобретения (disruption technologies) ворвутся в ваши мечты сбоку и неожиданно, жить и работать каждый раз при этом придётся по-новому, и вряд ли ваша долгосрочная цель вам в этих обстоятельствах поможет. Применяйте методы стратегирования, которые разработаны транснациональными корпорациями для себя, для стратегирования собственной судьбы. В корпоративном мире стратегии тоже не пишутся одна навсегда, но постоянно меняются. Техноэволюция не дремлет, сильные стороны компаний так же приходят и уходят, как и сильные стороны людей. И каждое из этих приходящих новых умений что-то сделать будет сложнее предыдущих, это усложнение и есть развитие. Нужно бежать со всех ног, чтобы только-только остаться на месте.

Биологический мозг у гениев оказывается примерно таким же, как и у всех остальных людей (не удаётся найти каких-то особых «структур гениальности»), так что разница в интеллекте, дающая разницу в скорости освоения новых видов мастерства, определяется главным образом версией «прошивки» интеллекта, удачно полученным образованием. Интеллект ведь только отчасти врождённый. Интеллект, он же «мыслительное мастерство», можно усилить. Если нужно непрерывно адаптироваться к новым обстоятельствам, то усиление интеллекта сделает эту адаптацию легче и быстрее. Книга/курс не только объясняет, почему нельзя придумать себе островок стабильности в океане перемен (это утопия!), но и объясняет, как стать умнее, чтобы чувствовать себя уверенней при стремительных переменах.

В книге/курсе предлагается уже образованным людям пройти дополнительное обучение упорядоченному ряду фундаментальных мыслительных практик, поддерживающих друг друга (поэтому мы назвали этот ряд дисциплин интеллект-стеком, технари этот термин понимают сразу, а нетехнарям можно представить стопку/стек учебников по каждой дисциплине, причём учебники вверху стопки требуют понимания учебников внизу стопки). Вот они: труд, системное мышление, экономика, методология, риторика, этика, эстетика, исследования, объяснения, логика, алгоритмика, онтология, теория понятий, теория информации, семантика, собранность, понятизация. В книге/курсе будет краткая характеристика текущего состояния этих дисциплин, ибо практически во всех из них уже в 21 веке произошли серьёзные изменения.

Для усиления интеллекта нужно не только получить фундаментальное образование по мыслительным практикам интеллект-стека, но и «отрастить» себе экзокортекс в виде компьютеризированного ведения заметок. У человека по факту животный мозг, которому трудно удерживать внимание и трудно вспоминать. Конечно, нужно тренировать память и внимание – но у мозга есть биологический предел, выше которого не прыгнешь. Мы предлагаем другой ход: всё писать, и дальше ничего не помнить, ибо помнить будет компьютер (бумагу оставим в прошлом веке). Человек не должен бояться быть киборгом, не-киборги сейчас только дикари из джунглей. Дикарь усиливает возможности своих рук палкой-копалкой, цивилизованный человек усиливает возможности своего мозга компьютером. Не пишешь, не используешь компьютер – не думаешь!

Проблема в том, что этим дисциплинам и их повседневному применению в мышлении с использованием компьютера не учат в школе, не учат в вузе, не учат почти нигде. Образованным людям, желающим обновить прошивку интеллекта в своём мозгу до версии 2021 года, нужно хотя бы узнать об этих дисциплинах интеллект-стека и сегодняшнем прогрессе в этих дисциплинах. И ещё нужно понять, как задействовать компьютер для того, чтобы усилить свой интеллект. Вот наша книга/курс выполняет ровно эту задачу.

Каждый человек – предприниматель по отношению к себе самому. Приходится выбирать, во что инвестировать своё время, чтобы через некоторое время получить свободного времени больше, чем было инвестировано. Мы предлагаем начать инвестировать время в обучение, но не прикладным практикам, а фундаментальным. По затратам времени обучение дисциплинам интеллект-стека на каком-то кругозорном уровне будет примерно эквивалентно затратам времени на обучение бакалавра. И учиться нужно не столько на учебных проектах, сколько на рабочих. И ещё нужно много писать и моделировать в ходе то ли учёбы (нужно как-то попрактиковаться в применении материала учебных курсов), то ли работы, задачи для практики берём сразу рабочие! Никаких «учебных проектов»! Надежда в этой учебной инвестиции в будущее только на себя, остальным или всё равно, или они ничего не знают про системность развития и существование современной «прошивки» усиления интеллекта.

Ну, а дальше просто продолжать бесконечное развитие и себя, и тем самым человечества. Единственный способ спасения человечества от всех напастей (смерть, болезни, бедность, голод, холод и жара, и так далее по длинному списку) – это усилить людской и машинный интеллекты, и поумневшие люди и машины смогут решить те проблемы, которые сегодня считают неразрешимыми.

Решения большинства проблем приходят «сбоку», а не из тех отраслей, откуда сами инновации – микроволновки изобрели те, кто занимались радарами, роботами-юристами занимаются телекоммуникационные компании, такси занимаются поисковые компании, и так везде. Вы должны быть достаточно умны, чтобы и самим находить такие решения «сбоку», и понимать, что делать, когда такие решения других людей приводят к очередной нестабильности в бизнесах, с которыми вы связаны.

Если вы уже проходили какие-то курсы в Школе системного менеджмента, наша книга/курс помогут разложить всё изученное по полочкам и определиться с дальнейшими шагами по вашему образованию. Если не проходили никаких курсов, то вам будет любопытно узнать о том, чему же именно нужно учиться, и в каком порядке.

Материалы книги/курса неоднократно разбирались на методологических семинарах Школы системного менеджмента и Русского отделения INCOSE, автор несколько лет вёл одноимённый лекционный курс в Школе системного менеджмента, значительная часть материалов была предварительно опубликована в блоге автора. Многочисленные комментарии, полученные за несколько лет, позволили существенно улучшить изложение. Огромное спасибо за эти комментарии! Отдельно нужно упомянуть советы по улучшению текста от Церена Церенова, Прапион Медведевой, Ильшата Габдуллина, Анны Лубенченко, Виктора Агроскина, Георгия Башилова, Антона Климата, Ирины Парамоновой.

В книге/курсе даже в этой второй версии не решены вопросы терминологии. Так, в книге два «предпринимателя» (роль агента, занимающегося трансдисциплиной «экономика», и трудовая роль, наряду с ролями инженера и менеджера), в методологии роль «практик», но в экономике и философии для обсуждения вопросов практики говорят просто «агент» (и в тексте тоже отражена эта двойственность – агент как играющий все роли, и агент как практик в методологии). Есть большое подозрение, что методологию в интеллект-стеке нужно будет разделить на несколько поддисциплин, недостаточно внимания уделено прикладным практикам и их дисциплинам, коллективным феноменам (культура и контркультура предприятий, сообществ, цивилизации), мало внимания уделено личности в целом (ибо интеллект-стек всё-таки показан в версии, поддерживающей участие личности в разделении труда, но не в версии, в которой он помогает обустраивать личную жизнь). Часть этих вопросов будет уточнена в следующих версиях книги (равно как и исправление огромного числа опечаток, выделение всех, а не только некоторых терминов жирным шрифтом, добавка упражнений в курс для более полной проработки материала), часть будет подробней освещена в других книгах/курсах.

Решение о выпуске версии книги/курса в таком виде принималось на основании принципа release early, release often («публикуй рано, публикуй часто»), автор считает, что польза от выпуска в текущем виде существенно превышает вред от недостаточной проработки материала. А замечания и комментарии будут с благодарностью приняты и учтены в следующей версии.

Новости по поводу книги/текста появляются в чате поддержки книги/курса https://t.me/odo_course, онлайн-курс с текстом книги, упражнениями и задачами – https://system-school.ru/uptodate

1. Личное стратегирование: выбирайте проекты

Будущее уже здесь

Будущее уже здесь, только оно

неравномерно распределено.

У. Гибсон

Сегодня к этому высказыванию добавляют «и ужасно дорого стоит». А когда цена на «товар/услугу из будущего» падает (часто в несколько раз за год – экспоненциальная зависимость), это будущее вдруг становится широко распространённым, то есть настоящим. А новое будущее опять уже здесь, и опять дорого стоит.

Будущее как туман: на расстоянии вытянутой руки всё прозрачно, а в трёх метрах может оказаться абсолютно невидимая стена.

Рис.0 Образование для образованных. 2021

Метафора тумана для будущего была предложена одним из отцов современного искусственного интеллекта Geoffrey Hinton как вполне адекватная, туман ведь имеет экспоненциальную зависимость его прозрачности от расстояния3, и это основная проблема для мышления людей о будущем: человек ожидает линейного развития ситуаций, но по отношению к будущему развитие идёт по экспоненциальным законам: совсем ничего, ничего, почти ничего, и вдруг ай-ай-ай сколько и сразу потом ой-ой-ой, уже всё!

Почему будущее так неопределённо? Почему нельзя выделить один какой-то ведущий тренд, и всё подробно и точно предсказать? Почему футурологи ничего не могут толком сказать?

В мире всё со всем связано неочевидным способом, мир целостен, он системен – части его взаимодействуют, и эти взаимодействия очень трудно предсказать. Единственного ведущего изменения, определяющего будущее, нет. Все радикальные новинки приходят «сбоку» от той сферы деятельности, в которой они вносят максимальные изменения в привычный уклад. Микроволновку на кухню изобрели спецы по радарам!

Первый компьютер сделали на радиолампах в середине 20 века, хотя всё программирование уже было изобретено ещё Бэббиджем в середине 19 века4. Триоды пришли в компьютеры «сбоку», они совсем не для этого изобретались, изобретены были ещё в 1906 году5, но технология массового производства была отлажена много позже, результирующая дешевизна триодов появилась отнюдь не сразу.

Дешёвые триоды придумали использовать как элементную базу для логических цепей в компьютерах только в августе 1942 года, когда Джон Мокли6 написал 7-страничный документ «The Use of High-Speed Vacuum Tube Devices for Calculation», в котором предлагал Электротехнической школе Мура (подразделение Пенсильванского университета) построить электронную вычислительную машину, основанную на электронных лампах. Руководство Школы работу не оценило и сдало документ в архив, где он вообще был утерян.

В апреле 1943 года Мокли по памяти восстановил документ уже для Баллистической лаборатории, он был одобрен. В проекте машина называлась «электронный дифф. анализатор» (electronic diff. analyzer). Это была уловка, чтобы новизна проекта не вызвала отторжения у военных. Все они были уже знакомы с дифференциальным анализатором, и проект в их представлении просто предлагал сделать его не механическим, а электрическим. Проект обещал, что построенный компьютер будет вычислять одну траекторию за 5 минут. Военные сказали «ОК», и выделили деньги: $61700 на первые 6 месяцев исследовательских работ. В контракте под номером W-670-ORD-4926, заключенном 5 июня 1943 года, машина называлась «Electronic Numerical Integrator» («Электронный числовой интегратор»), позднее к названию было добавлено «and Computer» («и компьютер»), в результате чего получилась знаменитая аббревиатура первого в мире универсального (то есть программируемого на самые разные вычисления) электронного компьютера ENIAC7. Абсолютно засекреченный компьютер был полностью готов лишь осенью 1945 года, а первыми его программистами стали шесть девушек8.

Такая витиеватая последовательность событий в начале, середине, конце (в любом месте!) технологических революций типична. Будущее непредсказуемо: ни содержание изобретения электронного компьютера, ни время изобретения, ни место изобретения – предсказать это всё было невозможно, хотя все необходимые для изобретения компьютера идеи были хорошо известны. Зато можно было предсказать, что дальше события развивались не линейно, а экспоненциально: разработка ENIAC на вакуумных радиолампах дала старт компьютерной революции, далее компьютерная революция следовала уже экспоненциальным, «революционным» законам.

Электронные вычислительные машины оказались быстры и надёжны, в отличие от механических, пневматических и даже электрических (реле) вычислителей. Вычисления от электронных ламп перешли к транзисторам, потом к транзисторным микросхемам, а сейчас вы уже можете купить и квантовый компьютер (прямо через облако, не выходя из дома, у более чем дюжины провайдеров9), и оптические вычисления (оптический компьютер в 2021 году тоже уже можно купить, хотя не все даже профессионалы знают об этом). Обещание вычисления одной баллистической траектории за 5 минут кажется милым и наивным, сегодня такой счёт шел бы микросекунды, но начиналось всё именно так: это было запредельно круто для 1943 года!

Будущее как бы растягивается на некоторое время:

• Оно сначала очень долго невозможно в принципе. Функция чего-то нового уже обсуждается, но конструкция ещё непонятна. Это «знаем что, но не знаем как» может длиться сотни лет, а то и тысячи (летать-то людям хотелось давно! А сумели это осуществить не так давно. Кстати, между первым полётом братьев Райт и полётом человека на Луну прошло всего 60 лет, тут тоже была экспонента). Скажем, машинный интеллект казался невозможно далёким будущим (а многим и сейчас таким кажется, хотя с его применениями люди сталкиваются ежедневно: ожидается появление «человекоподобного искусственного существа», которого никогда и не будет – машинный интеллект просто приходит в неожиданных формах).

• Затем это «будущее-в-настоящем» очень дорого стоит и его немного, то есть оно недоступно для большинства. Скажем, искусственный интеллект ещё в начале 2012 в общественном мнении был невозможным за любые деньги. Но в конце 2012 года (после победы нейронных сетей в соревновании распознавания изображений ImageNet Challenge10) уже было понятно, что с машинным интеллектом всё в порядке, и развитие будет быстрым. Но стоимость машинного интеллекта приемлемого качества даже сегодня запредельно высока11. Очень немногие компании могут себе позволить с ним работать «на фронтире».

• Наконец, оно становится уже настоящим и повсеместным, «не будущим». Новые технологии (то самое «будущее») стоят дёшево, это не роскошь. Машинный интеллект, понимающий команды с микрофона уже обыден, все разговаривают со своими телефонами и даже не удивляются, что телефон отвечает не жестяным голосом робота, а нормальным голосом с человеческими интонациями, да ещё показывает картинку говорящего с вами никогда не существовавшего человека, робота-аватара. Будущим считают уже что-то другое, а не эту повседневность, которая ещё вчера была далёкой мечтой. Будущее – как стена тумана, отходящая с каждым шагом. Как горизонт, ускользающий при быстром к нему движении.

До сих пор принято мечтать о том, что будет в 21 веке – в будущем. Но мы давно уже в этом будущем, уже прошёл 21% от 21 века!

Подрыв подо всей цивилизацией сразу

Disruption technologies принято переводить как подрывные технологии12 – это такие технологии, которые закрывают одни отрасли и открывают другие. Типичная такая цепочка – это телеграф, который был подорван технологией проводного телефона, который был подорван технологией сотового телефона, который был подорван технологией смартфона, и дальше через чаты происходит возврат к телеграфу, а звонки всё больше групповые видеозвонки. Виниловые пластинки стали CD-дисками, а потом и вовсе в сетевые музыкальные сервисы. Гибкие магнитные диски появились, уступили место «флешкам» буквально на несколько лет, а затем и флешки исчезли из употребления, данные передаются через облачные сервисы.

Каждый такой «подрыв» – это исчезновение одних массовых видов работ, требующих мастерства в уходящей технологии и приход новых видов работ, требующих мастерства в приходящей технологии. Десятки и сотни тысяч людей, а то и миллионы занятых в подорванных технологиях вынуждены были переучиваться. Сейчас это происходит с нарастающим масштабом, и увеличивающейся скоростью.

Кто помнит извозчиков? Буквально за 13 лет с 1900 по 1913 год гужевой транспорт в Нью-Йорке был заменён автоперевозками, с чего Tony Seba и начинает свою серию презентаций в 2014 году13, которую потом он повторял и уточнял вплоть до 2020 года, когда тренд с электромобилями стал уже всем очевиден14. Но это в мегаполисе, в Нью-Йорке. А в целом по США с 1910 по 1920 за десять лет число пассажиро-километров была поднято с 11% до 81%. Для этого была построена автомобильная промышленность, развёрнуты производство бензина и сеть автозаправок – и это в то время, когда страна отвлекала ресурсы на участие в первой мировой войне.

Рис.1 Образование для образованных. 2021

Такие же истории можно рассказывать о секретарях-машинистках и машинописных бюро. Об операторах ЭВМ в эпоху мейнфреймов. Веб-мастера на старте интернета просуществовали буквально несколько лет. Из массовых профессий буквально сейчас стремительно уходит профессия кассира, магазины без кассы в мире уже появились и потихоньку распространяются, одновременно безналичные расчёты резко сократили затраты времени нынешних кассиров – и людей на кассе теперь нужно меньше при сравнимой длине к ним очереди.

Можно ли назвать занятость, приходящую и уходящую на несколько лет «профессией»? Нет, нельзя. Это просто «занятость», практикование какого-то мастерства. В долгой жизни можно стать мастером во многих деятельностях, но необязательно каждый вид своего мастерства называть «профессией».

Все эти технологические подрывы и связанные с ними сценарии вынужденного переучивания миллионов людей, вызваны одной и той же причиной: экономикой экспоненциальных технологий.

В экспоненциальных технологиях цена технологии нелинейно (в полтора-два раза за год) падает. Поскольку цена падает по экспоненте, эту технологию начинают покупать в больших масштабах. Распространённость новой технологии следует закону S-образной кривой, в которой есть участок буквально взрывного, экспоненциального роста – а потом просто становится некому продавать, все уже имеют эту технологию. Но тут обязательно появляется новый «неожиданный» подрыв – и всё повторяется: сначала дорого и у немногих, потом очень дёшево, и у всех. Так что кривая падения цены – экспонента, а кривая распространения технологии – логистическая, она же S-curve (Рис. 1).

Ничего линейного в будущем нет, это цепочка неожиданных экспоненциальных подрывов – и в каждом таком подрыве есть период с «ничего вроде не происходит» с последующим периодом «неожиданно всё стремительно». Вкладываться в устаревшую технологию становится неправильно по чисто экономическим соображениям, и происходит шаг развития – переход к новой технологии, у которой совершенно другой потенциал развития (Рис. 2).

Рис.2 Образование для образованных. 2021

Рис. 1

Рис.3 Образование для образованных. 2021

Рис. 2

Главное тут то, что самые разные «экспоненциальные технологии», каждая с каким-то своим «законом» (то есть коэффициентом к экспоненте, чаще всего этот «закон» называют по имени инженера, определившего этот коэффициент) кратного падения цены за год складываются вместе в одной результирующей технологии, и в этот момент начинается подрыв: эта технология стремительно распространяется, её использование в силу дешевизны вырастает кратно в год.

На картинке показана скорость распространения новых технологий. Видно, что чем позже появляется технология, тем быстрей она распространяется. Первый успешный смартфон (iPhone) появился в 2007 году, всего 14 лет назад. Первый планшет (iPad) – в 2010 году, всего одиннадцать лет назад.

Рис.4 Образование для образованных. 2021

Почему iPhone появился в 2007 году и имел сразу такой успех? Потому что в этом продукте сошлись множество других экспоненциальных технологий: экспоненциально падала стоимость транзистора в чипе (закон Мура), бита во внешней памяти (закон Кридера), числа пикселей в матрице камеры (закон Хенди), передачи данных (закон Баттера), а ещё сенсорный экран, литий-ионные аккумуляторы, GPS и датчики акселерометра. И когда всё это стало достаточно дешёвым и слиплось в один продукт за $600, он «взлетел». Помним, что Apple пыталась запустить до iPhone абсолютно инновационный наладонный компьютер Newton, это был 1993 год15. И ничего не получилось: технологии были ещё не готовы, они уже все были в наличии, но слишком дорого стоили. И речь идёт о продуктах, в которых этих разных стремительно дешевеющих технологий много. В какой-то момент цена самых разных составляющих падает в разы, стоимость самого сложного продукта падает (неожиданно для всех) в разы – и он мгновенно разлетается по планете.

Через пару лет после появления смартфона в 2009 году появился Uber, он предложил бизнес-модель заказа такси с использованием смартфона и облачных вычислений, и через 7 лет (в 2016 году) число заказов через Uber стало больше, чем во всех таксомоторных парках США. Через 8 лет (в 2017 году) Uber и Lyft с начального нуля получили 20% от всего объёма перевозок (в милях) в таких городах, как Сан-Франциско и Нью-Йорк. А в декабре 2020 Uber продал своё подразделение автопилотируемых автомобилей16 – там уже несколько лет ожидалось экспоненциальное развитие, но его не случилось! Самоуправляемые автомобили находятся пока на начальной стадии S-образной кривой. А потом? А потом, через несколько лет будет традиционное – «ах, когда же это всё успело произойти?!». Разговоры вдруг станут реальностью, и ключевое тут будет слово «вдруг».

Эти нелинейности и неожиданности моментов использования одних технологий в составе других и последующего стремительного распространения появляются за счёт чисто экономических причин: экспоненциального падения стоимости новаций, и массовых закупок вдруг «внезапно» подешевевшей технологической роскоши. Тут нет никаких «планов развития инноваций» от правительств, или ещё каких-то других конспиративных теорий, реализации чьих-то долгосрочных планов. Кто мог предсказать появление смартфонов и дата-центров по приемлемой для широких масс цене? Кто мог без этих дешёвых смартфонов и дешёвых дата-центров сделать аналог Uber?

Никакие эксперты не в состоянии предсказать будущее: каждая из технологий неочевидным образом снижает цены и делает доступными огромному количеству людей те технологии, в состав которых они входят. А если и не снижается цена, то при той же цене можно получить характеристику в разы лучше. Пять лет назад за $2000 можно было купить ноутбук с 8Gb памяти, 4 ядрами процессора и FullHD дисплеем. Сегодня за ту же сумму можно купить ноутбук с 32Gb памяти, 8 ядрами процессора и 4К дисплеем. И ещё там будет 1Tb твёрдотельный «диск» (который уже давно не диск!). Такие ноутбуки, какие были 5 лет назад, стоят $1000, вдвое дешевле, а то и меньше. «Вдвое за пару лет» гласит закон Мура по поводу числа транзисторов на микросхеме – это начальник службы исследований и разработки компании Fairchild Semiconductor Гордон Мур сформулировал ещё в 1975 году, он предположил тогда, что так будет ещё лет десять. Но это было 46 лет назад! Сейчас скорость падения цены по закону Мура немного уменьшилась, но закон до сих пор продолжает действовать. И даже «вдвое за четыре года» вместо «вдвое за два года» – это тоже экспонента, и это тоже очень быстро!

Ниже представлены «экспоненциальные технологии», которые Тони Себа отслеживал по состоянию на конец 2019 года, и которые повлияют на образ жизни и занятость, связанные с транспортом, энергетикой, строительством и огромным числом других сфер деятельности.

Этот список не очень поменялся за пару лет, и он очень похож по составу на самые разные другие подобные списки технологий. Все такие технологии следуют чему-то типа закона Мура в полупроводниковой промышленности, то есть цена на них существенно падает ежегодно, и сочетаются они в продуктах и услугах причудливым и неочевидным способом. И когда появляется продукт или сервис с их использованием, он распространяется по миру со скоростью пожара – ибо стоит дёшево.

Рис.5 Образование для образованных. 2021

Это распространение можно очень приблизительно разделить на следующие стадии17:

• стандартизация (standardization, возникновение промышленных стандартов, позволяющих организовать встраивание новой технологии во внешние системы). Если вы обнаружили перспективную технологию, в которой ещё нет стандартов, то вам повезло: вы близки к началу её распространения.

• удобство использования (usability, обеспечение удобного интерфейса к технологии, иногда речь идёт о «ключевом приложении», killer application)

• переход в массовое потребление (сonsumerization)

• переход в инфраструктуру (foundationalization, изо всех утюгов, «потребление незаметно»).

В компьютерах сначала появились открытые архитектуры (стандартизация), затем графические интерфейсы (удобство использования), потом они стали потребительским товаром (iPhone и магазин приложений), а теперь основной компьютинг идёт вообще в инфраструктурных организациях – дата-центрах. Интернет начался со стандарта HTML (стандартизация), затем появился удобное его использование (разделение оформления и содержания страниц через стилевые описания CSS), затем появились социальные сети, а сейчас по факту интернет стал основой для большинства рабочих, промышленных и торговых коммуникаций. В AI стандарты уже появились (например, ONNX18), удобство использования – это голосовые и чат-интерфейсы, это пока только появляется, так что ещё ждём перехода к массовому использованию (по аналогии с интернетом это может быть ситуация, в которой AI создаются самими пользователями, а не специалистами), и некоторое время ещё нужно ждать до инфраструктурности.

Эти все этапы довольно быстро пробегаются самыми разными технологиями.

Пример подрыва: электромобили уже сейчас дешевле бензиновых автомобилей

В своих презентациях (последняя по транспорту – 22 апреля 2020 года19) Tony Seba рассказывает, что по итогам «чистого подрыва» с 2025 года (это уже через 4 года) все новые автомобили будут электрическими. Jensen Huang (CEO компании NVIDIA) выпустил в 2021 году автомобильный компьютер Orin (по факту это стандартизация автомобильного компьютинга), который может обеспечить необходимую вычислительную мощность для полностью автономного (роботакси, высший уровень автономности 5) безопасного вождения, в 2022 году на его основе уже будут выпускаться автомобили20. Новые электромобили будут беспилотными, им не потребуются водители. Удобство использования технологии нейронных сетей: автомобиль без водителя как ключевое приложение.

Уже сегодня несколько китайских производителей имеют электромобили со стоимостью до $30тыс. при батарее с дальностью поездки от 300 километров. В 2021 году стоимость бензинового и электрического автомобилей из расчёта жизненного цикла на километр пробега сравнялись. Переход на электромобили стал чисто экономическим решением, например в расчёте на три года владения автомобилем и 12тыс. миль пробега ежегодно в UK нужно будет платить за электромобиль 67 пенсов за милю, а за бензиновый автомобиль 74 пенса за милю, это уже сегодня21. Через пару лет разница будет настолько ощутима, что бензиновые автомобили просто перестанут покупать даже «по привычке».

А дальше будут нелинейные эффекты от сочетания быстро проходящих свои стадии развития технологий: обычный легковой автомобиль 96% времени простаивает, и только 4% времени находится в движении. Автономный электромобиль, предоставляемый как сервис по вызову такси, будет в работе весь день. Иметь собственный автомобиль станет невыгодным. Стоимость поездки резко упадёт, и можно будет покупать абонемент на поездки за цену существенно меньшую, чем стоимость обслуживания и страховки собственного автомобиля. Это уже происходит с сервисами car sharing (аренда автомобиля на одну поездку, при этом ты сам его ведёшь) в крупных городах.

Меньше автомобилей обслужат больше жителей, и они не будут долго стоять. 80% парковочного места освободятся. Они экономичны, и нефти для автомобилей потребуется меньше, цена нефти резко упадёт, этому помогает ещё и солнечная энергетика плюс наличие дешёвых аккумуляторных батарей (а дешевизна аккумуляторов объясняется в том числе и тем, что они нужны прежде всего для электромобилей, но и их с удовольствием используют и для солнечных и ветровых электростанций).

Там будет и много других чудесных следствий – но тут главное в скорости, с какой изменится мир уже в ближайшее время. Точка перегиба S-образной кривой автономного электротранспорта на быстрый взлёт – как раз 2021 год, до нынешнего года изменения были практически незаметны, а после – неизбежно стремительны. В 2030 году автомобили с бензиновым двигателем будут как гужевой транспорт в 1930 году. Для этого не хватает только инфраструктуры «электрозаправок», но она появляется очень быстро, у всех ведущих автопроизводителей есть планы на этот счёт.

И переход на электромобили – это не единственный тренд, который изменит городской транспорт. Удалённая работа больше не считается чем-то неправильным (и дело тут даже не в экспериментах на живых людях, которые провели правительства всех стран в 2020 году, пандемия ковида просто немного ускорила ход событий в этой сфере). Сервисы доставки продемонстрировали, что они реально экономят время на походы в магазины, а доставка необязательно через пять лет будет делаться людьми. Электросамокаты стали массовыми буквально за пять лет, они порождение того же тренда на экспоненциальное уменьшение цены батарей и доступность безналичных расчётов через смартфоны.

Мир неузнаваемо изменится за ближайшие десять лет, и продолжит меняться так же быстро и дальше. Бояться этого не нужно, нужно радоваться. Человечество за это время станет:

• более здорово

• более сыто

• более недовольно происходящим, ибо кто был никем, тот станет всем, и наоборот.

Вывод: менять работу и образ жизни придётся практически всем, а то и по нескольку раз за десяток лет.

Роботы заберут работу? Нет!

Учитываем, что на первом месте отслеживаемых Tony Seba экспоненциальных подрывных технологий – машинный интеллект. Он занимает особое положение, потому как он может быть направлен на улучшение самого себя, «компьютерные программы, которые пишут компьютерные программы».

Tony Seba считал ещё в 2019 году, что развитие машинного интеллекта не экспоненциально, а гиперэкспоненциально. Похоже, что он прав. Использован машинный интеллект может быть так же, как и любой человеческий интеллект: везде, где используется интеллект людей. Интеллект универсален, нет закрытых от него сфер. Как эта гиперэкспоненциальная подрывная технология повлияет на мир, предсказать нельзя – как нельзя предсказать, как именно повлияет на мир интеллект естественный. Это покрыто туманом будущего.

Изменения в мире произойдут стремительно, и в 2030 году, уже через девять лет (вам сколько в этот момент будет лет?) 400—800 млн. нынешних рабочих мест будут автоматизированы, труд на этих местах существенно изменится (читай: «исчезнет в его текущем виде»). Это древний отчёт 2017 года от McKinsey, и как раз по поводу таких отчётов Tony Seba предупреждает в своих презентациях и книгах, что они недооценивают масштабы перемен в разы из-за неучёта экспоненциального характера затрагиваемых ими технологий: автоматизация к 2030 году коснётся миллиардов рабочих мест. То, что сейчас говорят «цифровая трансформация», а иногда и «гиперавтоматизация», ничего не меняет: это всё маркетинговые замены термина, но суть дела остаётся: человеческий труд заменяется машинным, как физический труд, так и умственный.

Почему применяют роботов, а не людей? Часто не потому, что роботы не болеют, не уходят в отпуск, не спят, а работают быстрее. Нет, роботы работают лучше, чем люди – или делают недостижимое людьми (быстрее, точнее, меньше ошибок), плюс меньше отвлечений при решении рутинных задач и отсутствует время для отдыха.

Так, с января 2019 в Walmart вместо уборщиков вышли 360 роботов фирмы BrainOS, в апреле к ним добавили ещё 1500. Эти роботы убирают лучше и быстрее, управляя обычными уборочными машинами, плюс их не нужно часто нанимать и дополнительно учить (среди уборщиков в год меняется от 30% до 100% персонала. И всех этих новеньких нужно найти, нанять, обучить – с роботами этого не нужно, их покупка, ввод в эксплуатацию и настройка занимают меньше времени). Чтобы покупатели не катались на этих машинах, место водителя на них отгораживают жёлтыми ленточками22. И это даже не единственное использование роботов в магазинах, сами магазины становятся роботами (из них исчезают в том числе и кассиры, контролем наличия товара на полках занимаются роботы, и всё остальное тоже переходит к роботам)23.

Рис.6 Образование для образованных. 2021

Это нормально, этого не нужно бояться. Ещё недавно 90% людей были заняты сельским хозяйством, а сегодня – именно благодаря машинам – осталось всего 3% «крестьян» (хотя работников современных ферм меньше можно назвать «крестьянами», они больше похожи на заводских работников по стилю их жизни и виду занятий).

Несмотря на это, все высвободившиеся из сельского хозяйства люди оказались заняты, даже с учётом того, что число людей на земле сильно подросло! Более того, и пролетариата, заводских рабочих, сегодня тоже не так много, как ещё полвека назад! А бедность, тем не менее, существенно в планетарных масштабах уменьшилась.

Основная ошибка рассуждений на тему «роботы отберут работу» в том, что количество работы в мире не константа, постоянно появляется новая работа по мере вовлечения в деятельность людей всё новых ресурсов и бесконечного развития технологий. Все эти заявления «роботы заберут работу у людей» – пугалки из ненаучной фантастики, фэнтези. Люди (а через некоторое время люди с машинами) придумывают себе и машинам всё новые и новые занятия вместо тех, от которых их освободили машины, сумма труда в мире с распространением каждой подрывной технологии только растёт. И прежде всего уходит самый тяжёлый, неблагодарный, опасный труд.

Есть ещё и резерв увеличения свободного времени, которое можно потратить и на просто отдых, и на развитие/образование: люди радуются, а не печалятся, что «электричество и машины отняли работу». Одну работу отняли, пять других дали!

Рис.7 Образование для образованных. 2021

Этот тренд на сокращение рабочих часов для нормальной жизни проявляется и в росте свободной занятости (freelance, gig economy, platform economy24) с использованием для поиска работы онлайн-платформ для самых разных видов мастерства. Есть даже платформы для оплаты меценатами чьих-то хобби (patronization). Если ты мастер в каком-то хобби, то тебе за это могут заплатить! Хобби и работа постепенно теряют чёткую границу между ними.

Тем не менее, автоматизация гарантирует вам частую смену работы: вам не удастся много и долго заниматься в жизни одним и тем же делом, это уже точно невозможно! Старая работа будет существовать некоторое время, а затем «неожиданно» подрываться и исчезать по самым разным причинам, поэтому вам нужно будет постоянно задействовать своё умение делать что-то новое. Вам нужно будет регулярно вписываться в новые проекты. Если вы этого не умеете, то придётся научиться.

Инновации: всегда сбоку

Проблема с непредсказуемостью будущего в том, что все подрывные инновации приходят не из тех отраслей, где они появляются – поэтому-то их и невозможно отследить. Микроволновку изобрели спецы по радарам, а не производители мясорубок и холодильников. Компьютер на радиолампах радиоэлектронщики, а не математики. Самолёт – владельцы мотоциклетной мастерской братья Райт25. Роботами-юристами начали торговать в России провайдеры сотовой связи МТС и Мегафон26. Рынок такси взрывает не только Uber, но в России это Яндекс. такси (в России Uber и Яндекс уже слились вместе)27. Сбербанк уже торгует музыкой28, и он уже не «банк», а просто «Сбер».

Откуда придёт подрыв вашей текущей занятости – непонятно, но чаще всего это будут «пришельцы со стороны». Своих-то конкурентов вы отслеживаете, но что делать с тем, когда самые сильные конкуренты появляются стремительно «из ниоткуда»? Их не отследить, это нельзя спланировать.

Экспоненциальные технологии делают эти подрывы стремительными. Вот пример вычислительной оптики:

Рис.8 Образование для образованных. 2021

На рисунке29 один из снимков сделан в сентябре 2016 году смартфоном iPhone 7 Plus, а другой – камерой-зеркалкой с большим объективом EOS650D. Вы можете угадать, какой снимок чем был сделан? Левый – смартфоном, правый – зеркалкой.

До сентября 2016 года было принято считать, что позиции производителей больших фотоаппаратов хорошо защищены законами физики: эффект bokeh30 красивого размытия фона при чёткой фигуре на переднем плане мог проявляться только на фотоаппаратах с большими объективами.

Рис.9 Образование для образованных. 2021

Apple пришёл на фоторынок, где его никто не ждал, принёс вычислительную оптику, а не большой объектив. Экспоненциальные технологии сделали дешёвыми процессоры и маленькую точную механику – потребовалось две дешёвые маленькие камеры, а не один большой дорогой объектив. На улице 2016 года тем временем соревновались хипстеры: у кого фотоаппарат больше, тот и победил в качестве снимков!

Дальше всё быстро: эффект bokeh в сентябре 2016 года был продемонстрирован на двух камерах iPhone 7 Plus, но уже в сентябре 2018 года цена опять упала, AI даёт тот же эффект на одном сенсоре – Google Pixel 2 series, Apple iPhone XR. Да ещё и телефоны с 3—5 камерами стали обыденными. Потребность в больших фотоаппаратах стала нишевой (и эта история произошла уже после того, как цифровая фотография вытеснила плёночную).

Но и это было не последней точкой в удешевлении. Во время перехода на удалённую работу практически все сервисы видеоконференций предоставили возможность не только размыть фон, но и вовсе его заменить. Речь идёт уже о супердешёвых веб-камерах на ноутбуках и в компьютерах, и не о неподвижных картинках, а о видео, и ещё об универсальных процессорах. Экспоненциальные технологии делают своё дело: что было диковинкой на самых дорогих моделях телефонов в 2017 году, стало дешёвым общим местом везде. Заодно люди, которые до этой технологии стеснялись своей домашней обстановки, просто перестали её показывать, они заменили её на выбранный ими фон – и сэкономили на интерьере. Наоборот, показать крутую домашнюю обстановку стало привилегией богатых! Повторяется история с нейлоновыми рубашками: сначала их носили только самые богатые, а затем их стали носить только самые бедные. Такое типично для экспоненциальных технологий.

Вычислительная оптика также помогла к 2021 году разобраться со съёмкой смартфонами в темноте, в том числе и съёмкой видео высокого разрешения и повышенным контрастом. Нужда в больших и дорогих фото- и видеокамерах резко упала. Рыночные прогнозы традиционного рынка фотокамер вдруг показали падение до 2025 года на 14% в год31, но и это ещё не окончательные цифры: Tony Seba приводит хорошие примеры, почему прогнозы не оправдываются. Они не учитывают экспоненциальных зависимостей! Пару десятков лет назад точно такой же переход шёл от плёночной фотографии к цифровой – и всё началось и закончилось за пяток лет.

Производители смартфонов, а теперь и производители ноутбуков пришли в сферу фотографии «сбоку» и буквально за несколько лет дали доступ к качественному фото и видео для практически всех жителей планеты. Это дало возможность необычным применениям фото: контроль качества работы удалёнными сотрудниками (они фотографируют результаты своей работы, это практически бесплатно), платёж по карте, когда не нужно вводить её номер, а он распознаётся автоматически, платежи по штрих-кодам и QR-кодам, автоматизация переводов надписей на иностранных языках, прокторинг для онлайн-сдачи экзаменов. Игровая индустрия зарабатывает на играх типа Pokemon Go, где изображение покемонов накладывается на изображение реального мира – и всё это появилось буквально за три-четыре последних года. Представьте, сколько людей приложили свои знания и умения, участвуя в этих изменениях. А ведь это только один из небольших сюжетов происходящих перемен! Фотография, бывшая уделом немногих, превратилось в видеографию, доступную практически всем! У каждого видеокамера в кармане, и даже не одна (в смартфоне есть и камера для селфи, и камера для съемки, и встроенный микрофон для записи звука на видео, и можно сделать «захват экрана» для видео происходящего на экране).

Но и это ещё не конец истории про «физика не позволит сделать объектив меньше»! В 2021 году физиками был предложен новый оптический элемент: «пространственная пластина», которая позволяет убрать пространство между линзой и матрицей. Если заменить линзу плоской металинзой, а необходимое пространство за этой линзой заменить пространственной пластиной, то можно сделать реально плоский объектив. Как пишут изобретатели, вполне можно всю заднюю стенку смартфона превратить в объектив, получив в 14 раз лучше разрешение и чувствительность при съемках в темноте, чем у больших фотоаппаратов с большими объективами32.

Если перейти на подобную оптику, то можно получить плоские телескопы, плоские микроскопы, и никаких утолщений для камер на задней панели смартфонов. И это тоже приходит сбоку, производители телескопов и микроскопов никак не ожидают (предыдущий тип оптического элемента «линза» был предложен 400 лет назад, и с тех пор не было новинок – до 2021 года!), что подобная новинка появилась не от конкурирующих производителей телескопов и микроскопов. Изобретатели этой технологии пришли из лаборатории квантовой оптики, а завод-производитель пространственных пластин будет не заводом оптического оборудования с парком шлифующих стёкла станков, а заводом нанометаматериалов с абсолютно другим оборудованием!

Рис.10 Образование для образованных. 2021

Когда речь идёт об информационных технологиях, всё происходит ещё быстрее и неожиданней. На удалённую работу даже там, где это было нельзя себе представить мир перетянулся разве что не за пару месяцев. MS Teams как средство удалённой работы (отнюдь не все пользуются Zoom) поднял пользовательскую базу с 0 до 18 миллионов человек за два года, а потом за три месяца пандемии дорастил её до 77 миллионов человек. Ещё через год в MS Teams было уже 145 млн. человек33. Много фирм буквально за пару месяцев начала пандемии сообразили, что дорогой офис – это не преимущество, а недостаток. И начали нанимать сотрудников по всему миру, а не только проживающих недалеко от офиса. Это означает, что рынок офисной недвижимости был по факту подорван софтверными фирмами, обеспечивающими сервисы удалённой работы34, беда пришла «сбоку».

Мир меняется от принципиально непредсказуемых факторов. Вы не можете предсказать изобретения 7 миллиардов человек! В том числе и «антиизобретения» законодателей, типа пандемических локдаунов как неконституционно вводимых ограничений на передвижение, или запрета каких-то вычислений типа вычислений для криптовалютного рынка. И эти непредсказуемые изменения распространяются по земному шару крайне быстро – речь идёт об экспоненциальных, и даже гиперэкспоненциальных изменениях, которые происходят не по воле каких-то правительств, а по воле изобретателей и поддерживающих их предпринимателей и инвесторов.

Примеры мы привели главным образом из производства, но примерно то же самое творится в науке. Современная лингвистика была закрыта буквально за несколько лет: много лет нарабатываемые лингвистами языковые модели оказались менее точными, и менее полезными на практике, чем языковые модели на основе нейронных сетей – и делали их отнюдь не лингвисты, а специалисты по машинному интеллекту. Математики, специалисты по архитектуре нейронных сетей, программисты пришли в лингвистику «сбоку» – и они теперь на лингвистическом фронтире, буквально за три года (с момента появления архитектуры transformer35 в 2017 году), а не лингвисты с их тысячелетним багажом знаний. А теперь появились на базе этих изменившихся представлений о естественном языке и его природе научные работы, где по-новому оценивается роль естественного языка по сравнению с использованием формального математического языка в логике36.

Даже если брать математику в приложении к физике, то и тут всё быстро, и «классические учёные» могут уже не поспевать за прогрессом. Графовую нейронную сетку «дистиллировали» в алгебру, а затем подобрали в этой алгебре математическую форму (символьная регрессия37, или выявление/discovery символьных моделей) для выражения закономерностей в физических наборах данных. Чтобы проверить подход, переоткрыли уравнения ньютоновской механики, переоткрыли гамильтониан из квантовой механики, и предложили закон (математическую формулу) для описания гало тёмной материи в космологии – чтобы продемонстрировать не «переоткрытие», а «открытие»38. Основная физическая интуиция как раз и берётся символьной регрессией, в основе которой эволюционный алгоритм. Лидер в этой области символьной регрессии вполне уже коммерциализован39:, эволюционный/генетический алгоритм символьной регрессии Eureqa.

По большому счёту всё равно: у вас предпринимательская гипотеза, научная гипотеза, инженерная гипотеза: выдвижение гипотез и их проверка относится к общим мыслительным умениям, хотя по-старинке называется «научным мышлением». Научное мышление общеупотребимо, любое «проверить идею», «понять причины», то есть объяснить. Этим поиском объяснения, выдвижением и проверкой гипотез для объяснений занимаются ежедневно миллионы учёных, но также и менеджеров, предпринимателей, инженеров, разглядывающих многочисленные данные по их предметам интереса. Предпринимательская гипотеза – это не научная гипотеза, но она одной природы с научной гипотезой, это догадка, которая должна выдержать проверку! Eureqa предлагает облегчение труда для самых разных людей, занимающихся выдвижением догадок/гипотез/guesses в самых разных деятельностях, и таких AI-сервисов по выдвижению гипотез будет много, они будут конкурировать, цена типовых «объяснений» будет падать. При этом цена самых трудных объяснений будет оставаться прежней и не падать, зато доступная для этой высокой цены трудность поиска и разнообразность доступных приёмов объяснения будет всё время расти.

Сама физика в текущих работах только привлекает внимание к новым алгоритмам, демонстрирует работоспособность алгоритмов научного мышления. Разработчики Eureqa не имеют какого-то отношения ко всей этой космологии и гамильтонианам, они просто «разрабатывают искусственный интеллект», что бы это ни значило. Им всё равно, объяснять движение планет, или движение курсов акций на фондовом рынке. Но они со своими объяснениями сначала пришли в науку, и продемонстрировали, что их алгоритм выдвигает гипотезы не хуже Кеплера!

Наука уже не будет прежней, и к ней пришли «сбоку»: к физикам пришли люди, занимающиеся нейронными сетями и символьной регрессией, а не физикой.

Копают люди давно уже не руками, и не палкой-копалкой, и не лопатой, а экскаватором. Для вытаскивания законов природы из данных палка-копалка из нейронных сетей и символьной регрессии уже готова, статья опубликована. А лет через пять ждём, что новые законы будут грести уже лопатой. Лет через двадцать-тридцать можно ждать и «научного экскаватора». Просто удивительно, как мало людей, понимающих суть происходящих перемен. В науке тоже всё новое приходит сбоку, и неудивительно, что «старые физики» не будут понимать, что происходит – как уже сейчас «старые лингвисты» не понимают, как устроены современные системы машинного перевода.

Искусственный (он же машинный) интеллект развивается сейчас особенно быстро, и Тим Урбан даже нарисовал про это иллюстрирующую экспоненциальные технологии картинку40:

Рис.11 Образование для образованных. 2021

Это картинка 2015 года. В то время трудно было представить, что робот-юрист возьмёт на себя 80% юридической работы в фирме, держащей миллионы контрактов. Или что AI победит чемпионов мира в Го, в StarCraft II. Машинный интеллект по сфере своего использования такой же, как естественный: он может применяться везде. В том числе и в диджействе. Технология NeuralMix в приложении DjayProAI для iOS получила апдейт41: раньше она могла разделить запись музыки на вокал, перкуссию и всё остальное, а теперь может разделить на вокал, перкуссию, бас и всё остальное. Смешивать два трека диджею можно уже не целиком, а отдельно каждую из четырёх частей трека. Но тут нейронные сети не просто автоматизируют труд диджея, но делают то, что человек раньше делать не умел. А ведь диджейство по факту массовая профессия: раньше учились массово семь лет в музыкальной школе, а теперь учатся год в школе диджеев – и пультов диджеев продаётся уж не меньше, чем роялей, просто на это уже мало кто обращает внимания. Сочиняет ли компьютер музыку? Да, конечно. Сочиняет ли новую музыку, или только перемешивает в новых сочетаниях давно известное? Сочиняет, проверено42.

Последствия гиперэкспоненциального развития машинного интеллекта закрыты туманом будущего. Но уже сегодня понятно, что эти последствия будут весьма заметными для каждого человека на Земле. Масштабы? Например, треть IT-бюджетов реального сектора сегодня направлены на проекты с AI, это неожиданный, но факт43. Сегодняшние инвестиции дадут отдачу через пару лет (дайте время на разработку и запуск новых интеллектуальных IT-систем в производство). Жизнь на производстве будет меняться, и быстро: деньги-то в это изменение уходят не маленькие! Скажем, переход с плановых ремонтов (35% этих ремонтов «чинят не поломанное», то есть бесполезны) на ремонты по состоянию, моменты которых определяются программами AI высвобождает в масштабах планеты огромное количество труда, который сейчас абсолютно бесполезен. Представляете, сколько это труда на планете – треть плановых ремонтов? И дело не только в этом труде. Если оборудование не останавливать для ремонта, это дополнительный выигрыш. Человечество будет богаче. Машинный интеллект выгоден.

Машинный интеллект научился переводить с иностранных языков (включая самые экзотические) на уровне восьмиклассника (или уже десятиклассника? Или первокурсника? Всё меняется так быстро, что не уследишь!). Профессиональные переводчики пока не потеряли работу, но изменения в мире оказались в другом – миллиарды людей получили доступ к плохому, но переводу через Гугл, Яндекс, Фейсбук. И это существенно добавило возможностей этих миллиардов людей на рынке труда. Никаких людей-переводчиков не хватило бы на такой объём обслуживания. Конкуренция на рынке труда возросла для многих работ, языковой барьер с учётом машинного перевода для этих работ перестал быть существенным.

А что с другими гиперэкспоненциальными технологиями? Там тоже всё интересно. Например, появились квантовые датчики, работающие на основе квантовой запутанности фотонов. И это даёт возможность построить новые типы микроскопов, которые могут изучать живые клетки в ходе их работы, не повреждая их лазерной подсветкой. Дальше появляется новый класс квантовых датчиков, и их цена тоже будет падать экспоненциально. Пульсоксиметры (измеряют как пульс, так и насыщение крови кислородом) в лучших моделях смартфонов появились ещё в 2015 году44, а теперь (июнь 2021) их можно купить в Москве даже в отдельном корпусе-напальчнике один и тот же по цене от 250 рублей (включая батарейку) до 2500 рублей: продавцы не успевают обновлять цены, всё этими пульсоксиметрами затоварено, цены ведь упали за год практически вдесятеро!

Время изменения мира начинает быть более быстрым, чем время изменения образования – люди не успевают переучиваться и переоснащать свои предприятия, чтобы успевать адаптироваться к новому миру.

Техника Коллинза: стратегия ежа

Джим Коллинз в материалах своего сайта45 для книжки по корпоративной стратегии «От хорошего к великому»46 предложил вариант нахождения своего «призвания» (иногда сегодня это называют японским словом «икигай»47 – то, для чего вы просыпаетесь утром и вытаскиваете себя из постели).

При этом он неявно исходил из того, что в своей книжке назвал архистратегией (архистратегия – общий тип стратегии) ежа. Ёж использует один и тот же приём: чуть что, он сворачивается в клубочек и выставляет миру свои иголки. Одно и то же действие в ответ на любое изменение вовне – каждый раз. И это ежа почти каждый раз спасает, стратегия оказывается эффективна.

Поэтому Коллинз предлагает в личном стратегировании найти эту стратегию ежа, найти своё главное преимущество, главное дело жизни. И дальше развивать это преимущество, сделать это своей профессией.

Он предлагает написать на трех разных листах бумаги списки деятельностей, которые а) вы делаете страстно, б) которые вы делаете лучше всех, в) за которые вы могли бы получать оплату.

Рис.12 Образование для образованных. 2021

После чего вам надо отдать эти листки вашим друзьям, чтобы не вы, а они обобщили то, что объединяет эти списки. Этим общим (тем, к чему у вас страсть, к чему есть талант, и за что платят) и занимайтесь, это и есть ваш личный икигай. Друзьям отдать списки надо, ибо у вас самих глаз замылен, и вы можете не заметить общее между пунктами в этих списках.

Но мы живём даже не во время перемен, а во время перемен перемен (меняется уже способ, которым проходят сами перемены), стратегия ежа сегодня перестала срабатывать! Коллинза критикуют, его теории оказались не работающими! Все пункты в трёх списках закрываются туманом будущего. Меняется то, к чему у нас страсть (мы ещё не знаем, от чего будем без ума через пару месяцев, оно просто ещё не открыто, а к чему страсть была, к тому мы охладеваем – надоедает!), меняется то, к чему талант (мы тоже можем не знать об этой деятельности, но завтра выяснится, что у нас к ней талант!), а уж за что платят – так это и так очевидно, что существенно меняется каждые несколько лет.

Рис.13 Образование для образованных. 2021

Всё покрыто облачками тумана будущего, и поэтому приходится прибегать к другой архистратегии – архистратегии лисы. Лиса (недаром она считается «хитрой») каждый раз делает что-то новое: то хвостом помашет, то засаду устроит, то тявкать начнёт, то побежит со всех ног, и всё это в зависимости от обстоятельств. Лиса тоже добивается успеха во многих случаях, но в совсем новых обстоятельствах у неё появляется шанс угадать подходящее действие – этого шанса уже нет у ежа, он новое угадать не может, он гарантированно проиграет. Преимущество ежа пропадает, если изменения становятся достаточно разнообразными.

Туман будущего не позволяет поставить какую-то цель, и дальше использовать стратегию ежа: быть меднолобым упёртым фанатиком, делающим одно и тоже независимо от стремительно меняющихся обстоятельств. Если цель хорошо видна, то она уже не в будущем и не может считаться мечтой. Это просто очередной шаг в жизни, и нужно как лисе, что-то придумывать новое для достижения понятной цели. Не романтично, но работает!

Что же делать? Стыдно ведь не быть романтиком, не иметь какой-то очень далёкой и плохо сформулированной цели в жизни?! Ежу легче рассказывать о себе, ему не нужно думать: у него стратегический день сурка. Как жить, когда тебя с детства учат, что в плане мечты ты должен устроить себе этот день сурка, но обстоятельства жизни меняются с такой скоростью, что невозможность многолетнего преследования одной цели в резко изменяющихся обстоятельствах становится очевидной? Если не можешь бежать в направлении цели, не можешь идти, то лежать в направлении цели – это же враньё? Поэтический язык? Что делать с этой романтикой, с этой утопией вечной мечты, к которой тебя приучают с детства, но которая очевидно не работает – ибо реализуешь давнюю мечту не ты, а те, кто придёт в эту мечту сбоку?

Против целей (against objectives)

МЕЧТЫ НУЖНО ОБНОВЛЯТЬ, ЧТОБЫ БЫТЬ СОВРЕМЕННЫМ!

Если вам стыдно, что вы ещё не нашли смысла жизни, у вас нет долгосрочных планов, вам трудно сформулировать мечту – познакомьтесь с литературой, обсуждающей порочность долгосрочного мечтательного целеполагания. Такой литературы сегодня много, и это счастье. Раньше таких книжек не было, всех поголовно уговаривали выбрать «дело жизни», желательно в раннем детстве. Люди страдали, если у них не обнаруживалось цели в жизни, или эту цель в жизни приходилось менять каждые несколько лет. А страдать не нужно, это ведь нормально! Концепт «цель жизни» придуманный, он абсолютно искусственный, в нём нет ничего естественного.

Как бы вы выбрали себе профессию data scientist, поставили бы целью в жизни стать «учёным данных», когда это слово появилось в обиходе где-то в конце 2011 года? Восемь лет спустя это популярнейшая «профессия», фронтир прогресса и мечта студента. Но вот беда, популярность её начинает падать в 2019 году, в 2021 году, через эти восемь лет опять случился какой-то очередной подрыв! Disruption technologies опять что-то изменили. Вот данные Гугла (популярность запроса data scientist по годам):

Рис.14 Образование для образованных. 2021

Интуиция подсказывает, что в текущей ситуации непрерывных технологических подрывов лучше долгосрочных целей не ставить, ибо это всё равно бесполезно, вы этих целей не достигнете, это будет источник постоянного расстройства. Но художественная литература вроде как требует такие цели иметь. Что делать?

Нужно ставить краткосрочные цели. Всю жизнь. Но эти цели не должны быть любыми. Их нужно тщательно выбирать. Нужно заниматься стратегией собственного развития, и развиваться всю жизнь. Не преследовать всю жизнь мечту, а всю жизнь развиваться. Бесконечно развиваться, преследуя самые разные цели развития – это много круче, чем быть романтиком-фанатиком, то есть слепо преследовать долгосрочную мечту!

БУДЬТЕ РАЦИОНАЛЬНЫМ ФЛАНЁРОМ

Самая известная книжка из литературы по постановке краткосрочных жизненных целей и избеганию долгосрочных – это «Антихрупкость» Нассима Талеба48. Описанный в книжке идеал – быть «рациональным фланёром49», который пересматривает свой маршрут на каждом шагу, чтобы сделать его зависимым от полученной новой информации. Это ключевой момент: никогда не планировать «в будущее» на расстояние больше, чем один шаг. Никогда не бежать «куда», не иметь долгосрочной цели, которую вы хотите достигнуть. Нужно всегда бежать «откуда», отталкиваясь от того, что вам уже известно. На следующем шагу будет известно больше, меняйте цели, делайте новые ставки.

Не нужно быть рабом собственной мечты и уверенности. Долгосрочная мечта призрачна, она обманет. Не чувствуйте вины от того, что вы поменяли мечту50. Идите за текущим интересом, ибо ваш интерес тоже может меняться. Фланируйте, доверяйте интуиции. Но фланировать нужно рационально, не делать очевидных ошибок.

В книжке Талеб формулирует, что «ставить нужно на всё что угодно», ибо никто не знает, где лежит твоё счастье – будущее принципиально непредсказуемо. Но нужно быть «лохом»51, чтобы ставить на реализацию мечты, которую можно осуществить только через много-много не просто рискованных, но вообще непонятных шагов.

Рис.15 Образование для образованных. 2021

На рисунке 24 в книге Нассим Талеб приводит картинку «штанги» во временном ряду, как главного способа достижения успеха и заработка:

Рис.16 Образование для образованных. 2021

Основная идея в том, что можно крупно выиграть в проекте один раз – и это покроет многочисленные убытки от прошлых проектов. Для этого нужно ограничивать величину убытка, и ввязываться в проекты, где не ограничен выигрыш. А дальше работает статистика: хотя бы один раз из многих проектов должно повезти, если не будете лохом, не наделаете ошибок, и не попадёте на неограниченный убыток. И этот один раз даст выигрыш во всей серии проектов. Проигрышей избежать не удастся: неожиданности всё равно будут, и плохие, и хорошие. На каждый десяток обычных ожидаемых белых (известных, это не обязательно «хорошие») лебедей обязательно прилетит один чёрный полностью неожиданный (тоже необязательно плохой, но полностью неожиданный – в книге это символ неожиданности, хорошей или плохой, раньше ведь не знали о существовании чёрных лебедей, они водились только в южном полушарии).

Рис.17 Образование для образованных. 2021

Главный вид ошибки: ставки, при которых можно проиграть неограниченно много. Такие ставки – ошибки, их просто не нужно делать. Нужно блюсти асимметричность: если потери будут, то они не должны превышать заранее известного маленького размера, а если выигрыш – то по величине он может быть неограниченно большим. На этой асимметричности малого проигрыша и возможно огромного выигрыша можно получать прибыль чисто статистически, если хоть как-то оценивать вероятности. А средних ставок с «умеренным риском» делать не нужно, это разорительно. Талеб по основной своей специальности как раз был трейдер на рынке ценных бумаг, поэтому он свои примеры и образы главным образом брал оттуда.

Талеб предупреждает: если вы знаете, куда идёте, или считаете, что знаете, куда идут другие (внешне «целеустремлённые», но вы же не знаете, что у них там на самом деле в мыслях!), то это ваше телеологическое (связанное с целеполаганием) заблуждение. Не заблуждайтесь, никакой разумной цели нет ни у вас, ни у других, честно фланируйте – рационально решайте куда идёте на каждом шагу, не стройте длинного маршрута заранее. И удача время от времени будет вам улыбаться, случай будет работать на вас.

БРОСАЙТЕ НЕУДАЧНЫЕ ПРОЕКТЫ БЕЗ СОЖАЛЕНИЯ

Не жалейте уже потраченные средства на убыточные проекты. Неудачи – они запланированы, просто списывайте затраты, и бросайте проект. Не будьте меднолобым достигателем несбыточных целей.

Рис.18 Образование для образованных. 2021
Продолжение книги